EconPapers    
Economics at your fingertips  
 

Sparse online warped Gaussian process for wind power probabilistic forecasting

Peng Kou, Feng Gao and Xiaohong Guan

Applied Energy, 2013, vol. 108, issue C, 410-428

Abstract: Wind generation has experienced rapid growth around the world in the past decade. This highlights the importance of the short-term wind power forecasting. This paper focuses on the probabilistic short-term wind power forecasting. An online sparse Bayesian model is established. The key features of the proposed model are its non-Gaussian predictive distributions and its time-adaptiveness. This model based on the warped Gaussian process (WGP), which handles the non-Gaussian uncertainties in wind power series by automatically transforming it to a latent series. The transformed series is well-modeled by a Gaussian process (GP), then the non-Gaussian uncertainty associated with the wind power can be predicted in a standard GP framework. Wind generation is a process whose characteristics change with time, so a wind power forecasting model should exhibit adaptive features. To address this, we introduce an online learning algorithm to WGP, thus permitting WGP to track the time-varying characteristic of wind generation. Moreover, since the high computational costs of WGP hinder its practical application on large-scale problems such as wind power forecast, the proposed model also employs a sparsification method to reduce its computational costs, thus enhancing its practical applicability. The simulation on actual data validates the effectiveness of the proposed model. The data used in the simulation are obtained in the real operation of a wind farm in China.

Keywords: Wind energy; Probabilistic forecasting; Gaussian process regression; Online learning algorithm; Sparsification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002341
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:108:y:2013:i:c:p:410-428

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.03.038

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:410-428