EconPapers    
Economics at your fingertips  
 

Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment

Pedro Haro, Frederik Trippe, Ralph Stahl and Edmund Henrich

Applied Energy, 2013, vol. 108, issue C, 54-65

Abstract: The conversion of low-grade lignocellulosic biomass such as residual wood or straw to synthetic fuels and chemicals is currently being developed within the bioliq® concept (at the Karlsruhe Institute of Technology – KIT, Germany). The aim of this study is to model and assess three different synthesis process concepts with DME (dimethyl ether) as a platform chemical. The process concepts are designed and assessed using existing technologies, as well as the previous studies for pyrolysis and gasification sections. The respective considered products in the selected concepts are synthetic gasoline, ethylene and propylene. Using biomass for these applications can reduce fossil CO2 emissions by replacing non-renewable carbon sources. The techno-economic assessment concludes that total energy efficiency ranges between 37.5% and 41.1% for the production of gasoline and olefins, respectively. The resulting specific production cost in the gasoline concept is 72% higher than the current market price. In the olefins concept the difference to the current market prices of ethylene and propylene is reduced to 40%. The specific production costs in the gasoline and ethylene concept are 59% higher than current market prices. The possibility to sequestrate CO2 within the considered concepts at costs of 39€/t allow additional revenues from sequestrated CO2. In order to meet current market prices, the implications of sequestrated CO2, mineral oil tax reduction and the combination of both kinds of subsidies are evaluated in this study.

Keywords: Techno-economic assessment; Thermochemical biorefinery; Process design and simulation; Dimethyl ether (DME); Gasoline; Olefins (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002018
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:108:y:2013:i:c:p:54-65

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.03.015

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:54-65