EconPapers    
Economics at your fingertips  
 

Biodiesel from waste cooking oils via direct sonication

Veera Gnaneswar Gude and Georgene Elizabeth Grant

Applied Energy, 2013, vol. 109, issue C, 135-144

Abstract: This study investigates the effect of direct sonication in conversion of waste cooking oil into biodiesel. Waste cooking oils may cause environmental hazards if not disposed properly. However, waste cooking oils can serve as low-cost feedstock for biodiesel production. Ultrasonics, a non-conventional process technique, was applied to directly convert waste cooking oil into biodiesel in a single step. Ultrasonics transesterify waste cooking oils very efficiently due to increased mass/heat transfer phenomena and specific thermal/athermal effects at molecular levels. Thus, energy and chemical consumption in the overall process is greatly reduced compared to conventional biodiesel processes. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with effects of different ultrasonic, energy intensities and energy density are reported. Optimization of process parameters such as methanol to oil ratio, catalyst concentration and reaction time are also presented. It was observed that small reactor design such as plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction due to increased energy density and ultrasonic intensity.

Keywords: Biodiesel; Ultrasonics; Process parameters; Waste cooking oil; Gas Chromatography; Reactor design (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002845
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:109:y:2013:i:c:p:135-144

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.04.002

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:109:y:2013:i:c:p:135-144