Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation
Yan Zhang,
Fang Zhang,
Man Chen,
Pei-Na Chu,
Jing Ding and
Raymond J. Zeng
Applied Energy, 2013, vol. 109, issue C, 213-219
Abstract:
Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation (MCF) was demonstrated for the first time by membrane inlet mass spectrometry. It was found that hydrogen supersaturation ratio (RH2) increased dramatically (from 1.0 to 20.6) when H2 partial pressure (PH2) was reduced by N2 flushing or sparging. The distribution change of metabolites was insignificant under low PH2 (<0.30atm) due to the high value of RH2, which indicated that it was more relevant to the concentration of dissolved H2 (H2aq) rather than PH2. To explain the cause of hydrogen supersaturation, the overall volumetric mass transfer coefficients (KLa) for H2 were calculated. KLa changed slightly (∼7.0/h) with N2 flushing, while it increased from 7.4 to 10.2/h when N2 sparging rate increased from 0.3 to 17.9mL/min/L. However, the required KLa values were orders of magnitude higher than the experimental ones when maintaining low RH2 by gas sparging, which indicated that hydrogen supersaturation was likely inevitable in MCF. Moreover, to improve the hydrogen yield of MCF, the gas sparging rate was suggested as 2–10times of the hydrogen production rate.
Keywords: Hydrogen supersaturation; Mixed culture fermentation; Extreme-thermophilic; H2 partial pressure; Dissolved H2; KLa (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913003139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:109:y:2013:i:c:p:213-219
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.04.019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().