Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries
Cristina Flox,
Marcel Skoumal,
Javier Rubio-Garcia,
Teresa Andreu and
Juan Ramón Morante
Applied Energy, 2013, vol. 109, issue C, 344-351
Abstract:
Two strategies for improving the electroactivity towards VO2+/VO2+ redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20mAcm−2) up to 30th cycle, indicating a promising alternative for improving the VFB.
Keywords: All-vanadium redox flow battery; Graphene-supported; PAN-functionalized felt; Energy storage; Electrochemical properties (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913001086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:109:y:2013:i:c:p:344-351
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.02.001
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().