Pyrolysis kinetics of biomass from product information
Y.F. Huang,
P.T. Chiueh,
W.H. Kuan and
S.L. Lo
Applied Energy, 2013, vol. 110, issue C, 8 pages
Abstract:
A common way to research thermal conversion processes is through the analysis of chemical kinetics. In this article, a semi-quantitative method was established to calculate the chemical kinetics of biomass pyrolysis through differential and integral routes by using the thermal analysis–mass spectrometry (TA–MS) signals of pyrolytic products. The method can be applicable when there is a difficulty in quantitative analysis. Kinetic parameters calculated by the method were compared with those determined by thermogravimetric data. The accuracy and precision of the method may be improved by increasing the frequency of data recording or product sampling. The method should be widely applicable as long as the instrumental signals of products are sufficient and satisfactory. Therefore, various reactions can be comprehensively discussed and understood.
Keywords: Pyrolysis; Kinetics; Biomass; Thermogravimetry; Mass spectrometry (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913003292
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:110:y:2013:i:c:p:1-8
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.04.034
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().