Experimental investigation of a thermally powered central heating circulator: Pumping characteristics
Christos N. Markides and
Ajay Gupta
Applied Energy, 2013, vol. 110, issue C, 132-146
Abstract:
A thermally powered circulator based on a two-phase thermofluidic oscillator was constructed and operated successfully as a replacement for a central heating hot water circulator coupled to a domestic gas-fired boiler. During regular operation the thermally powered circulator demonstrated a pumped flow-rate that decreased monotonically as the head applied across it increased. A maximum measured flow-rate of 850L/h was achieved at zero head, and a maximum head of 8.4 mH2O was attained at near-stalling (zero flow-rate) conditions. In agreement with previous modelling studies of the technology, increased inertia in the load line seems to lead to improved circulator performance. Further, the oscillating circulator exhibited an operational frequency between 0.24 and 0.33Hz, which was mostly determined by the circulator configuration. The pumping capacity was strongly affected by the oscillating liquid amplitudes in the power cylinder that defined the positive displacement amplitudes of the liquid piston into and out of the hot water circuit. The best circulator configuration was associated with lower operation frequencies and relatively large ratios of suction to discharge displacement.
Keywords: Energy efficiency; Low-grade heat; Heat engine; Thermofluidic oscillator; Central heating circulator; Thermally powered pump (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002262
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:110:y:2013:i:c:p:132-146
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.03.030
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().