A competitive Markov decision process model for the energy–water–climate change nexus
Vishnu Nanduri and
Ivan Saavedra-Antolínez
Applied Energy, 2013, vol. 111, issue C, 186-198
Abstract:
Drought-like conditions in some parts of the US and around the world are causing water shortages that lead to power failures, becoming a source of concern to independent system operators. Water shortages can cause significant challenges in electricity production and thereby a direct socioeconomic impact on the surrounding region. Our paper presents a new, comprehensive quantitative model that examines the electricity–water–climate change nexus. We investigate the impact of a joint water and carbon tax proposal on the operation of a transmission-constrained power network operating in a wholesale power market setting. We develop a competitive Markov decision process (CMDP) model for the dynamic competition in wholesale electricity markets, and solve the model using reinforcement learning. Several cases, including the impact of different tax schemes, integration of stochastic wind energy resources, and capacity disruptions due to droughts are investigated. Results from the analysis on the sample power network show that electricity prices increased with the adoption of water and carbon taxes compared with locational marginal prices without taxes. As expected, wind energy integration reduced both CO2 emissions and water usage. Capacity disruptions also caused locational marginal prices to increase. Other detailed analyses and results obtained using a 30-bus IEEE network are discussed in detail.
Keywords: CMDP; Carbon and water taxes; Reinforcement learning; Climate change; Bidding strategies (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913003280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:111:y:2013:i:c:p:186-198
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.04.033
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().