EconPapers    
Economics at your fingertips  
 

Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses

Junhyun Cho, Jaeman Park, Hwanyeong Oh, Kyoungdoug Min, Eunsook Lee and Jy-Young Jyoung

Applied Energy, 2013, vol. 111, issue C, 300-309

Abstract: The optimal design of the gas diffusion layer (GDL) of proton exchange membrane fuel cells is crucial because it directly determines the mass transport mechanism of the reactants and products. In this study, the micro-porous layer (MPL) penetration thickness, which affects the pore size profile through the GDL, is varied as the design parameter of the GDL. The cell performance is investigated under various humidity conditions, and the water permeability characteristics are studied. In addition, the accelerated carbon corrosion stress test is conducted to determine the effect of MPL penetration on GDL degradation. GDLs with large MPL penetration thickness show better performance in the high-current–density region due to the enhanced management of water resulting from a balanced capillary pressure gradient. However, the loss of penetrated MPL parts is observed due to the low binding force between the MPL and the GDL substrate.

Keywords: Proton exchange membrane fuel cell; Gas diffusion layer; Durability; Micro-porous layer; Penetration thickness (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913004236
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:111:y:2013:i:c:p:300-309

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.05.022

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:300-309