Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions
Á.G. Miranda and
C.W. Hong
Applied Energy, 2013, vol. 111, issue C, 689 pages
Abstract:
The dynamic thermal and electrical behavior of high power LiFePO4 cathode-type Li-ion batteries is studied with extended considerations such as demanded current ranging from 12 to 30A, battery temperatures ranging from 283 to 313K and a redefinition of the concept of state of charge during cycling conditions. The equivalent electrical model, consisting of a series resistance, a parallel resistance–capacitor, a voltage source and state of charge calculators, can be improved with the addition of current and temperature gains for each element. In addition, a non-intrusively-obtained alternative thermal model extraction is proposed to uncouple from the experimental battery temperature based on electrochemical research found in the literature. This improved model extraction for high power cylindrical batteries can achieve a temperature and voltage relative runtime error in the range of 1% and 5% in average, respectively. The effects of lithium concentration in the anode and cathode are accurately predicted with state of charge accelerators, which vary linearly with temperature. Aiming for a power systems environment, the integrated battery model is built and validated experimentally to demonstrate its accurate prediction. This improved integrated battery model can be employed for battery stack simulations, improved state of charge algorithm testing and optimization of hybrid systems - with a light computational demand. Finally, a performance index radar plot is proposed to conveniently compare electrical and thermal properties of different types of batteries.
Keywords: Lithium ion battery; Integrated battery model; Dynamic cycle; State of charge (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913004595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:111:y:2013:i:c:p:681-689
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.05.047
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().