EconPapers    
Economics at your fingertips  
 

Computational study of biodiesel–diesel fuel blends on emission characteristics for a light-duty diesel engine using OpenFOAM

Harun Mohamed Ismail, Hoon Kiat Ng, Suyin Gan and Tommaso Lucchini

Applied Energy, 2013, vol. 111, issue C, 827-841

Abstract: In this paper, emissions formation process and its interaction with the combustion event are established for fossil diesel and the methyl esters of coconut (CME), palm (PME) and soy (SME) across three different engine conditions. Here, the OpenFOAM® open source CFD codes are utilised to simulate the in-cylinder events. The ignition delay (ID) period and the timing of peak pressure are accurately predicted to within ±0.2° crank angle for all the test cases. The maximum error between the experimental and computed peak pressure values across the test range is limited to below 4.5%. The change in the fuel type from fossil diesel to biodiesel alters the physical and the chemical delays, both of which affect the overall ID period. As a result, variations in the combustion behaviour and hence the emission characteristics are observed. Neat CME is found to produce both NOx and soot reduction across all the engine loads tested. The most significant reduction in soot level is achieved at high load operation, while greatest NOx reduction is recorded under low load condition when neat or B50 blends of the test biodiesel fuels are used. The best operating condition to result in simultaneous soot and NOx reduction through the use of biodiesel is at mid load condition with an engine speed of 2000rev/min.

Keywords: Biodiesel; Multi-component fuel; Diesel engine emissions; OpenFOAM (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913004819
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:111:y:2013:i:c:p:827-841

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.05.068

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:827-841