Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation
S. Njakou Djomo,
O. El Kasmioui,
T. De Groote,
L.S. Broeckx,
M.S. Verlinden,
G. Berhongaray,
R. Fichot,
D. Zona,
S.Y. Dillen,
J.S. King,
I.A. Janssens and
R. Ceulemans
Applied Energy, 2013, vol. 111, issue C, 862-870
Abstract:
Short-rotation woody crops (SRWCs) are a promising means to enhance the EU renewable energy sources while mitigating greenhouse gas (GHG) emissions. However, there are concerns that the GHG mitigation potential of bioelectricity may be nullified due to GHG emissions from direct land use changes (dLUCs). In order to evaluate quantitatively the GHG mitigation potential of bioelectricity from SRWC we managed an operational SRWC plantation (18.4ha) for bioelectricity production on a former agricultural land without supplemental irrigation or fertilization. We traced back to the primary energy level all farm labor, materials, and fossil fuel inputs to the bioelectricity production. We also sampled soil carbon and monitored fluxes of GHGs between the SRWC plantation and the atmosphere. We found that bioelectricity from SRWCs was energy efficient and yielded 200–227% more energy than required to produce it over a two-year rotation. The associated land requirement was 0.9m2kWhe-1 for the gasification and 1.1m2kWhe-1 for the combustion technology. Converting agricultural land into the SRWC plantation released 2.8 ± 0.2tCO2eha−1, which represented ∼89% of the total GHG emissions (256–272gCO2ekWhe-1) of bioelectricity production. Despite its high share of the total GHG emissions, dLUC did not negate the GHG benefits of bioelectricity. Indeed, the GHG savings of bioelectricity relative to the EU non-renewable grid mix power ranged between 52% and 54%. SRWC on agricultural lands with low soil organic carbon stocks are encouraging prospects for sustainable production of renewable energy with significant climate benefits.
Keywords: Direct land use change; Eddy fluxes; Life cycle assessment; Energy ratio; GHG emissions (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913004169
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:111:y:2013:i:c:p:862-870
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.05.017
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().