Buffering intermittent renewable power with hydroelectric generation: A case study in California
Martin K. Chang,
Joshua D. Eichman,
Fabian Mueller and
Scott Samuelsen
Applied Energy, 2013, vol. 112, issue C, 11 pages
Abstract:
Hydroelectric generation has the ability to buffer intermittent renewable generation. The objective of this paper is to explore the changing roles of hydropower and pumped storage dispatch in response to increasing renewable penetrations. A novel aggregate model of hydro resources in the state of California is used in conjunction with the Holistic Grid Resource Integration and Deployment model (HiGRID), a modeling tool that resolves hourly grid resource dispatch and management, to observe the impacts of increasing renewable penetration. The effects on the grid are explored by incrementally increasing the installed wind and solar capacity to meet the electric demand for California while re-dispatching hydro energy and capacity resources to balance the electrical power system. Increasing renewable generation results in increased periods of over generation, reducing the practical achievable renewable penetration. By adjusting the dispatch of hydropower to complement renewable generation a significant increase in the achievable renewable penetration can be implemented (8.0% for solar only, 2.2% for wind only and 2.8% for 50/50 mixture of wind and solar). Additionally, dispatching hydro to support renewables serves to increase the system-wide capacity factor, delay the onset of curtailment, and reduce the total curtailment at corresponding renewable penetrations.
Keywords: Hydropower dispatch; Pumped storage; Renewable integration; Buffering intermittency; Utility scale; Hydropower modeling (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913004108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:1-11
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.04.092
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().