EconPapers    
Economics at your fingertips  
 

Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface

Hongxia Chen, Jinliang Xu, Zijin Li, Feng Xing and Jian Xie

Applied Energy, 2013, vol. 112, issue C, 1283-1290

Abstract: Condensation heat transfer has been studied in the past century due to its wide applications in energy and power systems. The key scientific issue is the thick liquid thickness near the tube wall along the condenser tube length. The fabricated microstructures on the inner wall are the conventional technique to improve the performance. Here a passive phase separation concept was proposed to create distinct phase distribution. An empty cylinder made of a single layer of mesh pore surface was suspended in a tube, dividing the tube into an annular region and an inner region. The mesh pore surface prevents gas phase entering the inner region but sucks liquid towards the inner region. Thus largest possibility for gas directly contacted with the inner wall surface is ensured. An air/water two-phase flow experiment was performed and the stratified flow pattern modulation was investigated. When the liquid level in the horizontal tube is relatively higher, the liquid can be thoroughly within the mesh cylinder to form the “gas-floating-liquid” mode. The whole inner tube wall surface is covered by the gas phase. If the liquid content is relatively smaller, partial liquid can be sucked into the mesh cylinder. The contact area between the inner tube wall and gas is increased. The stratified flow pattern modulation is expected to significantly enhance the condensation heat transfer under low mass fluxes which is being verified by our continuous experiment.

Keywords: Phase separation concept; Condensation; Mesh cylinder; Phase distribution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912008677
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:1283-1290

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.11.062

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1283-1290