The use of dual horizontal wells in gas production from hydrate accumulations
Gang Li,
Xiao-Sen Li,
Bo Yang,
Li-Ping Duan,
Ning-Sheng Huang,
Yu Zhang and
Liang-Guang Tang
Applied Energy, 2013, vol. 112, issue C, 1303-1310
Abstract:
The Pilot-Scale Hydrate Simulator (PHS, 117.8L pressure vessel) is used to study the methane hydrate dissociation with dual horizontal wells using both the steam assisted gravity drainage (SAGD) and the steam assisted anti-gravity drainage (SAAD) methods. This study is the first time to propose the evaluation and the comparisons of the methane hydrate dissociation using these two methods. Both SAGD and SAAD technique are suitable for recovering gas from the unconsolidated hydrate reservoirs with high permeability. The experimental results indicate that in SAGD, the steam chamber expands and the fluid (gas and water) production process can be divided into three stages: (1) the original water and gas in the vessel are driven towards the well, and only gas is produced, (2) the gas and the original water are produced simultaneously, and (3) the steam chamber expands to the production well, and the hot water is produced. The area with limited temperature increase during the steam injection process corresponds to the hydrate undissociated zone in the reservoir. The hydrate dissociation rate, the gas production rate and the energy efficiency ratio (EER) in both the cases of SAGD and SAAD decrease over time. Comparing with that in SAGD, gas is easier to be produced from the upper production well in SAAD, and the long-term EER in SAAD is also larger. In a word, as a gas-producing method, SAAD seems to be more suitable for recovering gas from the hydrate reservoir than SAGD.
Keywords: Methane hydrate; Porous sediment; Three-dimension; SAGD; SAAD; Energy efficiency ratio (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:1303-1310
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.03.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().