EconPapers    
Economics at your fingertips  
 

Preparation and thermal characterization of paraffin/metal foam composite phase change material

X. Xiao, P. Zhang and M. Li

Applied Energy, 2013, vol. 112, issue C, 1357-1366

Abstract: The utilization of paraffin in the latent thermal energy storage (LTES) system for solar energy storage is hampered by its low thermal conductivity. Paraffin/nickel foam and paraffin/copper foam composite phase change materials (PCMs) were prepared using a vacuum impregnation method in the present study. The impregnation ratios which reflect the actual mass fraction of pure paraffin impregnated were studied comparatively for the impregnations with and without vacuum assistance. The surface porosity was obtained by employing the image processing approach. The thermal conductivities of the composite PCMs were measured by the transient plane heat source technique (TPS) as well as the steady state method, and the thermal behaviors were analyzed with a differential scanning calorimeter (DSC). It is found that the surface porosity obtained from image analysis was in the range of 90–94%, whereas the bulk porosity predicted by the mass fraction was about 97%. Compared with pure paraffin, the thermal conductivities of the composite PCMs were drastically enhanced, e.g., the thermal conductivity of the paraffin/nickel foam composite was nearly three times larger than that of pure paraffin. The presence of porous metal foam made the phase change temperatures shift slightly, e.g., the deviations of the peak melting temperatures of the paraffin/nickel foam composite and paraffin/copper foam composite with the pore size of 25PPI from those of pure paraffin were 0.55°C and 0.40°C, respectively.

Keywords: Metal foam; Composite phase change materials; Thermal characterization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (87)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913003462
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:1357-1366

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.04.050

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1357-1366