Simulating a future smart city: An integrated land use-energy model
Yoshiki Yamagata and
Hajime Seya
Applied Energy, 2013, vol. 112, issue C, 1466-1474
Abstract:
Designing a future smart city (FSC) that copes with the reduction of CO2 has become one of the urgent tasks of the next 20years. One promising approach to achieve FSC is to combine appropriate land use (compact city with energy efficient buildings and photovoltaic panels (PVs)), transportation (electric vehicles (EVs) and public transportation system) and energy systems (smart grid systems), because of the interaction between these elements. However, there are few models which simulate these elements in an integrated manner. This paper presents the concept of the integrated model, and shows the land use-energy part of the model created for the Tokyo metropolitan area, which is the largest Mega city in the world. Firstly, a spatially explicit land use model (urban economic model) is constructed for the study area, and the model is calibrated using existing statistical data. Secondly, possible future compact/dispersion city scenarios for the year 2050 are created using the model. Thirdly, intra-day dynamics (hourly) of electricity demand and supply from PVs, which is assumed to be installed to the roofs of all detached houses in the study area, under two urban scenarios is simulated. The obtained results suggest that [1] “compact” urban form may contribute to the reduction of electricity demand from the residential sector, but [2] PV-supply under the scenario may also be reduced because of the decreased share of detached houses. Hence in the compact city scenario, it is important to discuss the effective use of vacant areas in suburbs, which may be used for large PV installations, or be re-vegetated to mitigate urban heat island effects.
Keywords: Smart city; Compact city; Land use-transportation-energy model; Urban scenarios; Photovoltaic (PV) (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191300072X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:1466-1474
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.01.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().