Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells
Chengdong Kong,
Zilin Xu and
Qiang Yao
Applied Energy, 2013, vol. 112, issue C, 618-625
Abstract:
The main problem of the photovoltaic system is the high cost of solar cells. One possible solution is to concentrate the solar radiation to minimize the required cell area for the same output. In this paper a low-concentrating photovoltaic–thermal hybrid (PV/T) system was set up to study the electrical and thermal outputs under different weather conditions. The concentrator in the system was designed using Fresnel lens and flat mirrors to get a uniformly concentrated irradiation on the solar cells. The results show that on a clear day the electrical efficiency is about 10% and the thermal efficiency is about 56% for our system. Irradiance is the most important factor to characterize the weather. When the irradiance is above 350W/m2 the electrical output will saturate and when it is above 162W/m2 the thermal energy can be effectively output in our system. The system is also modeled to predict the output and describe the concentrator’s performance. By this model different concentrated PV/T systems can be compared in the electrical and thermal outputs and also the performance of concentrators.
Keywords: Low-concentrated PV/T system; Different weather conditions; Model evaluation; Optical efficiency; Solar irradiance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913001190
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:618-625
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.02.011
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().