Study on combined heat loss of a dish receiver with quartz glass cover
Fuqing Cui,
Yaling He,
Zedong Cheng and
Yinshi Li
Applied Energy, 2013, vol. 112, issue C, 690-696
Abstract:
In present work, a cavity receiver with quartz glass cover is presented for the dish concentrating system. The quartz glass cover can separate the receiver cavity from the ambient air and its selective coating layer can intercept the infrared radiation emitted from the inner-surface of the cavity receiver, which greatly reduce the natural convection and surface radiation heat losses. To fundamentally understand this design, a two-dimensional model for the heat transfer process that combines the natural convection and the surface radiation is proposed and developed. The simulation results show that the total heat flux of the covered receiver at 0° inclination is only about 36% of that for uncovered receiver. The model is then used to investigate the effects of various system parameters, such as orientation, temperature and emissivity of inner surface, on the heat transfer and fluid flow performance. It is found that, comparing with the natural convection, the surface radiation is the dominant heat transfer pattern. The orientation has significantly influence the convection heat transfer. However, the surface radiation keeps constant for different inclination angles. In addition, it is also found that the radiation heat transfer is significantly affected by the temperature and emissivity of the inner surface. The increase in the surface temperature and emissivity enhances the surface radiation proportion in the total heat loss. However, for the convection heat loss, it changes little and even decreases as the surface temperature and emissivity increases.
Keywords: Dish concentrating system; Cavity receiver; Quartz glass cover; Combined heat transfer; Heat loss (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913000159
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:690-696
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.01.007
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().