A power and cooling cogeneration system using mid/low-temperature heat source
Liuli Sun,
Wei Han,
Xuye Jing,
Danxing Zheng and
Hongguang Jin
Applied Energy, 2013, vol. 112, issue C, 886-897
Abstract:
An ammonia–water based system for power and cooling cogeneration using mid/low-temperature heat source is proposed and investigated in this study. The proposed system consists of a Rankine cycle and an absorption refrigeration cycle. The high-temperature portion of waste heat is used for power generation, whereas the low-temperature part is used for refrigeration. In addition, the exhaust heat of the power subsystem is recovered by the refrigeration subsystem. Simulation results show that the equivalent heat-to-power and exergy efficiencies of the proposed cogeneration system can reach 18.6% and 42.0%, respectively. Compared with separate power and refrigeration systems, the proposed system consumes 17.1% less heat with the same output. The effect of turbine exhaust vapor temperature on system performance is investigated. An experimental rig of an absorption refrigeration system with a cooling capacity of 15kW was built and tested. The proposed system was found to be capable of utilizing mid/low-temperature heat source more efficiently.
Keywords: Ammonia–water binary working fluid; Mid/low-temperature heat source; Absorption refrigeration; Power and cooling cogeneration (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002456
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:886-897
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.03.049
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().