Prediction and analysis of the seasonal performance of tri-generation and CO2 refrigeration systems in supermarkets
Y.T. Ge,
S.A. Tassou and
I.N. Suamir
Applied Energy, 2013, vol. 112, issue C, 898-906
Abstract:
A modern supermarket energy control system has a concurrent need for electricity, space heating or cooling, and food refrigeration. The power supply to the supermarket is primarily from the national grid, where losses in efficiency are due to the processes of energy conversion and transmission. Combined heat and power (CHP) offers the potential to locally produce electrical power and heating which could save energy and reduce CO2 emissions in the long run. During the summer months, as the space heating requirement in a supermarket is relatively small, the energy efficiency of a CHP installation can be improved by using excess thermal energy to drive a sorption refrigeration system to provide space cooling or refrigeration. This process is also known as tri-generation. In recent years, the use of CO2 as a refrigerant in supermarkets has received considerable attention due to its negligible contribution to direct greenhouse gas emissions and excellent thermophysical and heat transfer properties. Consequently, the application of a tri-generation system in a supermarket with CO2 refrigeration merits further investigation.
Keywords: Tri-generation; Supermarket modeling; All CO2 cascade refrigeration; Space heating and cooling (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912009099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:898-906
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.12.027
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().