EconPapers    
Economics at your fingertips  
 

Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system

Ronghui Qi, Lin Lu, Hongxing Yang and Fei Qin

Applied Energy, 2013, vol. 112, issue C, 93-101

Abstract: The falling film liquid desiccant air conditioning system is promising to achieve a low pressure drop and low possibility of solution droplets carried by air. However, the insufficient wetted area was found by previous researchers, and its value is difficult to be determined. With a single channel internally heated regenerator, this paper experimentally investigated the influencing factors affecting the wetted area and film thickness, by obtaining the flow size with a thermal camera. The increasing wetted area could improve the mass transfer significantly while the performance decreased with the increasing film thickness of liquid desiccant. The thickness of solution distributor impacted the initial film width most greatly, and it also significantly influenced the film thickness and flow velocity. Under incomplete wetting conditions, the film width increased with the solution mass flow rate proportionally, and the change of the distribution of film thickness was found simultaneously. However, solution temperature and concentration contribute insignificantly, and the direct impact of air and water on wetted area was minor. A 3-D model was developed, for predicting the wetting factor, and film thickness and flow velocity of the falling film. The calculation results were compared with experiment ones with average errors of 8.74% and 9.76%. The newly developed model could significantly improve the accuracy of performance evaluation and simulation of liquid desiccant air conditioning systems.

Keywords: Falling film; Liquid desiccant regeneration; Wetted area; Film thickness; Experiment; 3D model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913005060
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:112:y:2013:i:c:p:93-101

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.05.083

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:93-101