EconPapers    
Economics at your fingertips  
 

Optimal operation and forecasting policy for pump storage plants in day-ahead markets

Thomas Muche

Applied Energy, 2014, vol. 113, issue C, 1089-1099

Abstract: Pump storage plants are an important electricity storage technology at present. Investments in this technology are expected to increase. The necessary investment valuation often includes expected cash flows from future price-based unit commitment policies. A price-based unit commitment policy has to consider market price uncertainty and the information revealing nature of electricity markets. For this environment stochastic programming models are suggested to derive the optimal unit commitment policy. For the considered day-ahead price electricity market stochastic and deterministic unit commitment policies are comparable suggesting an application of easier implementable deterministic models. In order to identify suitable unit commitment and forecasting policies, deterministic unit commitment models are applied to actual day-ahead electricity prices of a whole year. As a result, a robust forecasting model should consider the unit commitment planning period. This robust forecasting models result in expected cash flows similar to realized ones allowing a reliable investment valuation.

Keywords: Forecasting; Stochastic programming; Unit commitment (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913006934
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1089-1099

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.08.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1089-1099