EconPapers    
Economics at your fingertips  
 

Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas

A.A. Turkin, M. Dutka, D. Vainchtein, S. Gersen, V.M. van Essen, P. Visser, A.V. Mokhov, H.B. Levinsky and J.Th.M. De Hosson

Applied Energy, 2014, vol. 113, issue C, 1148 pages

Abstract: Experimental results are presented on silica deposition in a typical domestic heat exchanger during combustion of siloxane-containing gas as a model of biogas that is produced naturally during the anaerobic degradation of organic material in landfills and waste water treatment plants. A model of silica deposition is developed. The main objective is to demonstrate that the mass flux of silica to heat exchanger surfaces is not sensitive to details of particle coagulation process and particle size distribution. It is shown that the deposition flux of silica depends linearly on siloxane concentration in input air/gas mixture.

Keywords: Biogas; Siloxane; Silica nanoparticles; Deposition; Thermophoretic transport (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007125
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1141-1148

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.08.068

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1141-1148