EconPapers    
Economics at your fingertips  
 

Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower

G.J. Nathan, D.L. Battye and P.J. Ashman

Applied Energy, 2014, vol. 113, issue C, 1235-1243

Abstract: The novel concept of a hybrid receiver–combustor, HRC, is presented, in which the functions of a solar-receiver and a combustor are combined into a single device. An economic assessment of this concept is then performed for a solar power tower electricity generating plant employing molten salt technology, to evaluate the conditions under which an economic benefit can be derived. The HRC is compared with an equivalent well-known concept of Solar Gas Hybrid, SGH, with otherwise of identical specifications, for both 1h and 13h of thermal storage capacity and also with an equivalent stand alone solar power tower, SPT, and a gas-only boiler. All hybrid configurations are designed to provide 100% of the electrical demand continuously, i.e. to operate in the fuel-saver mode. Costs of each configuration are compared for a constant size of power block and also for a constant size of heliostat field using a consistent and well established cost-estimating methodology. On the assumption that the HRC achieves the same combustion efficiency as the boiler for twice the capital cost of a solar receiver, the HRC is found to reduce both the overall capital cost and the levelized cost of generating electricity relative to the equivalent hybrid. The benefit is attributed to the increased sharing of infrastructure and to allowing a slightly smaller heliostat field size for the case of the same size of power block. The HRC has the additional benefit of reduced operation and maintenance due to reduced thermal cycling and of reduced thermal shock, although these are not included here owing to a lack of data with which to evaluate it reliably.

Keywords: Solar-thermal power generation; Hybrid receiver combustor; Hybrid; Levelized cost of electricity (LCE, LCOE) (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191300723X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1235-1243

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.08.079

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1235-1243