EconPapers    
Economics at your fingertips  
 

CO2 adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO2 partial pressure and fluidization velocity

F. Raganati, P. Ammendola and R. Chirone

Applied Energy, 2014, vol. 113, issue C, 1269-1282

Abstract: Among all the CCS strategies, post-combustion capture provides a near-term solution for stationary fossil fuel-fired power plants, eliminating the need for substantial modifications to existing combustion processes and facilities. In this respect, adsorption using solid sorbents has the potential, in terms of energy saving, to complement or replace the current absorption technology. Therefore, the design of highly specific CO2 adsorbents materials is requested. In this framework, great interest is focused on nanomaterials, whose chemico-physical properties can be tuned at the molecular level. As regards the handling of such materials, sound-assisted fluidization is one of the best technological options to improve the gas–solid contact by promoting a smooth fluidization regime. The present work is focused on the CO2 capture by sound-assisted fluidized bed of fine activated carbon. Tests have been performed in a laboratory scale experimental set-up at ambient temperature and pressure, pointing out the effect of CO2 partial pressure, superficial gas velocity, sound intensity and frequency. Effectiveness of CO2 adsorption has been assessed in terms of the moles of CO2 adsorbed per unit mass of adsorbent, the breakthrough time and the fraction of bed utilized at breakpoint. The results show, on one hand, the capability of the sound in enhancing the adsorption process and, on the other hand, confirm that sound assisted fluidization of fine solid sorbents is a valid alternative to the fixed bed technology, which require also an additional previous step of pelletization.

Keywords: CO2 capture; Adsorption; Fluidized bed; Acoustic fields; Fine particles; Activated carbon (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007174
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1269-1282

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.08.073

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1269-1282