Passive energy recovery from natural ventilation air streams
Ben Richard Hughes,
Hassam Nasarullah Chaudhry and
John Kaiser Calautit
Applied Energy, 2014, vol. 113, issue C, 127-140
Abstract:
Increasing levels of urbanisation and indoor air quality have led to enhanced research and development of sustainable technologies in buildings. This study investigated natural ventilation streams typically found in domestic buildings and used heat pipe technology to recover the energy from them. Computational Fluid Dynamics (CFD) based numerical code was used to predict the rate of heat transfer from a heat pipe heat exchanger model. The present numerical code was successfully validated against experimental data from literature. Pure water as a natural phase change material was employed to investigate the overall effectiveness of the heat pipe heat exchanger. Six models with varying vertical heights between the pipes were developed in order to investigate the optimum column pitch. A good correlation between the computational and analytical results was observed. The work focused on the vertical column height between the heat pipes and its impact on the overall rate of heat transfer, depicting an inverse relationship between the two parameters. The findings demonstrated the prospect for pre-cooling by 15.6°C and that a recovery of 3.3°C using this system which would assist in reducing energy consumption loads from the heating, ventilation and cooling sector, offering significant reduction in the carbon footprint of domestic buildings.
Keywords: Computational fluid dynamics; Effectiveness; Heat pipe; Heat recovery; Mass flow (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913005850
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:127-140
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.07.019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().