Modeling direct steam generation in solar collectors with multiphase CFD
David H. Lobón,
Emilio Baglietto,
Loreto Valenzuela and
Eduardo Zarza
Applied Energy, 2014, vol. 113, issue C, 1338-1348
Abstract:
The direct steam generation in parabolic-trough solar collectors, using water as heat-transfer fluid, is an attractive option for the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi megawatt range or industrial process heat supply. But the existence of single-phase and two-phase flow in the absorber pipes of the solar collectors constitutes a challenge for the development of simulation tools and process control schemes suitable for this type of solar technology.
Keywords: Parabolic-trough solar collector; Direct steam generation; CFD modeling; DISS test facility (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913006909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1338-1348
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.08.046
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().