Simulation of an electric transportation system at The Ohio State University
Giovanni De Filippo,
Vincenzo Marano and
Ramteen Sioshansi
Applied Energy, 2014, vol. 113, issue C, 1686-1691
Abstract:
We use longitudinal dynamics and simulation models to study the feasibility of deploying electric buses in place of conventional ones. The longitudinal dynamics model estimates energy use by an electric bus operating on different lines consisting of a mixture of urban and suburban driving. The simulation model is used to study the effect of the type and number of chargers deployed and the queuing policy used on queuing and charging times when buses must recharge their batteries. We use a case study based on the bus service operated on The Ohio State University campus and focus on six of the seven lines which operate around the center of campus. We demonstrate that all 22 of the buses on these lines can be made electric and that one 500kW or two 250kW chargers are sufficient to maintain reasonable service frequencies.
Keywords: Electric vehicle; Bus; Charging infrastructure; Queuing model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007587
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1686-1691
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.09.011
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().