EconPapers    
Economics at your fingertips  
 

Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University

Andrew Tong, Samuel Bayham, Mandar V. Kathe, Liang Zeng, Siwei Luo and Liang-Shih Fan

Applied Energy, 2014, vol. 113, issue C, 1836-1845

Abstract: The increasing demands for energy and concern of global warming are intertwined issues of critical importance. With the pressing need for clean, efficient, and cost-effective energy conversion processes, the chemical looping strategy has evolved as a promising alternative to the traditional carbonaceous fuel conversion processes. Chemical looping processes utilize oxygen carrier particles to indirectly convert carbonaceous fuels while capturing CO2 for sequestration and/or utilization. Throughout its development, multiple oxygen carrier compositions and reactor configurations have been studied and demonstrated. The Ohio State University (OSU) chemical looping technologies have received significant attention over the recent years. OSU’s unique moving-bed chemical looping technologies coupled with iron-based oxygen carrier particles capable of sustaining hundreds of redox cycles have the advantage of converting a variety of carbonaceous fuels, such as natural gas, coal and biomass, to electricity, H2, liquid fuels, or any combination thereof with zero to negative net CO2 emissions. Specifically, two chemical looping processes are being developed and studied, the syngas chemical looping (SCL) and the coal direct chemical looping (CDCL) technologies. Over the past 14years, these processes have developed from a novel concept to successful sub-pilot (25kWth) demonstrations. With the support of the Advanced Research Projects Agency – Energy (ARPA-E) of the US Department of Energy (USDOE), a 250kWth high pressure SCL pilot scale demonstration project was initiated for processing syngas to cogenerate pure H2 and sequestration-ready CO2 from a Kellogg Brown & Root gasifier at the National Carbon Capture Center. A 25kWth CDCL sub-pilot plant has been constructed and demonstrated at OSU with the support from National Energy Technology Laboratory (NETL) of the United States Department of Energy (USDOE). The combined SCL and CDCL operational time at reactive conditions well exceeds 850h. Multiple aspects of the OSU chemical looping development including the oxygen carrier properties, reaction mechanism studies, reactor design and modeling studies, the bench and sub-pilot scale process testing results, energy integration optimization, and techno-economic analyzes are discussed.

Keywords: Chemical looping; Moving bed reactor; Oxygen carrier; Carbon-capture; Fossil fuels; Coal (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191300425X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1836-1845

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.05.024

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1836-1845