Comparison of a new micaceous iron oxide and ilmenite as oxygen carrier for Chemical looping combustion with respect to syngas conversion
Florian Mayer,
Ajay R. Bidwe,
Alexander Schopf,
Kamran Taheri,
Mariusz Zieba and
Günter Scheffknecht
Applied Energy, 2014, vol. 113, issue C, 1863-1868
Abstract:
Chemical looping combustion (CLC) is a promising carbon capture and storage (CCS) technology. One of the challenges is to find the most suitable oxygen carrier (OC). Using solid fuels makes it important to use cheap and natural oxygen carriers, since there will probably be some loss of bed material while discharging ash from the system. Therefore ilmenite and a new micaceous iron oxide (MIOX ME 400) are compared with respect to syngas conversion in a 10kWth bubbling fluidized bed (BFB) reactor. The OC was alternatively reduced with either CO+H2 or CH4+H2 and oxidized with air at 900°C. The conversion of syngas with MIOX ME 400 is always higher (XCO, XH2>98%) than that with ilmenite. Conversion of CH4 is also better for MIOX ME 400, even though it is still low. It can be raised by increasing fuel reactor temperature from 900°C to 950°C which results in a CH4 conversion of 85–60% instead of 60–40%.
Keywords: Chemical looping combustion; CLC; Oxygen carrier; Ilmenite; Micaceous iron ore “MIOX” (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913003528
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1863-1868
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.04.056
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().