Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling
Magnus Rydén,
Henrik Leion,
Tobias Mattisson and
Anders Lyngfelt
Applied Energy, 2014, vol. 113, issue C, 1924-1932
Abstract:
Oxygen-carrier materials for chemical-looping with oxygen uncoupling (CLOU) must be capable of taking up and releasing gas-phase O2 at conditions relevant for generation of heat and power. In principle, the capability of a certain material to do so is determined by its thermodynamic properties. This paper provides an overview of the possibility to design feasible oxygen carrier materials from combined oxides, i.e. oxides with crystal structures that include several different cations. Relevant literature is reviewed and the thermodynamic properties and key characteristics of a few selected combined oxide systems are calculated and compared to experimental data. The general challenges and opportunities of the combined oxide concept are discussed. The focus is on materials with manganese as one of its components and the following families of compounds and solid solutions have been considered: (MnyFe1−y)Ox, (MnySi1−y)Ox, CaMnO3−δ, (NiyMn1−y)Ox, (MnyCu1−y)Ox and (MnyMg1−y)Ox. In addition to showing promise from a thermodynamic point of view, reactivity data from experimental investigations suggests that the rate of O2 release can be high for all systems. Thus these combined oxides could also be very suitable for practical application.
Keywords: Chemical-looping combustion; Chemical-looping with oxygen uncoupling; Combined oxides; Mixed oxides; Manganese (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913005230
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:1924-1932
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.06.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().