EconPapers    
Economics at your fingertips  
 

Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion

Shu-Yuan Pan, Pen-Chi Chiang, Yi-Hung Chen, Chung-Sung Tan and E.-E. Chang

Applied Energy, 2014, vol. 113, issue C, 267-276

Abstract: The reaction kinetics of carbon dioxide (CO2) capture by the accelerated carbonation of basic oxygen furnace slag (BOFS) in a rotating packed bed (RPB) was evaluated using the surface coverage model. Experimental data were utilized to determine the reaction rate constants and maximum carbonation conversion of BOFS based on the surface coverage model. The results indicate that the carbonation of BOFS in an RPB can be well-expressed by the surface coverage model, with R2 values from 0.98 to 0.99. In addition, the results of reaction kinetics could be validated by observation of SEM and XEDS before and after carbonation, which indicates that the reacted BOFS was surrounded by the CaCO3 product. On the other hand, the reaction kinetics of steelmaking slag in an RPB was compared with that in various types of reactors, i.e., autoclave and slurry reactors. The overall rate of carbonation in an RPB (i.e., 0.299min−1) was greater than that in both a slurry reactor (i.e., 0.227min−1) and an autoclave reactor (i.e., 0.033min−1). Furthermore, the maximum carbonation conversion of BOFS was initially determined by the results of the surface coverage model and then confirmed statistically by the response surface methodology (RSM). It was thus concluded that accelerated carbonation of BOFS in the RPB is a viable method due to its faster reaction kinetics under relatively milder reaction conditions. Accelerated carbonation of BOFS in the RPB is a promising process for CO2 capture due to its relatively higher carbonation conversion of BOFS within a shorter reaction time.

Keywords: Carbon capture; Reaction rate constant; Calcium carbonate; Autoclave reactor; Slurry reactor; Response surface methodology (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913006016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:267-276

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.07.035

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:267-276