EconPapers    
Economics at your fingertips  
 

Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol

Luis Caspeta, Mario A. Caro-Bermúdez, Teresa Ponce-Noyola and Alfredo Martinez

Applied Energy, 2014, vol. 113, issue C, 277-286

Abstract: Agave bagasse is the lignocellulosic residue accumulated during the production of alcoholic beverages in Mexico and is a potential feedstock for the production of biofuels. A factorial design was used to investigate the effect of temperature, residence time and concentrations of acid and ethanol on ethanosolv pretreatment and enzymatic hydrolysis of agave bagasse. This method and the use of a stirred in-house-made mini-reactor increased the digestibility of agave bagasse from 30% observed with the dilute-acid method to 98%; also allowed reducing the quantity of enzymes used to hydrolyze samples with solid loadings of 30%w/w and glucose concentrations up to 225g/L were obtained in the enzymatic hydrolysates. Overall this process allows the recovery of 91% of the total fermentable sugars contained in the agave bagasse (0.51g/g) and 69% of total lignin as co-product (0.11g/g). The maximum ethanol yield under optimal conditions using an industrial yeast strain for the fermentation was 0.25g/g of dry agave bagasse, which is 86% of the maximum theoretical (0.29g/g). The effect of the glucose concentration and solid loading on the conversion of cellulose to glucose is discussed, in addition to prospective production of about 50million liters of fuel ethanol using agave bagasse residues from the tequila industry as a potential solution to the disposal problems.

Keywords: Agave bagasse residues; Ethanosolv; Cellulases; High-solid loading hydrolysis; Fuel ethanol (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913006028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:277-286

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.07.036

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:277-286