A “carbonshed” assessment of small- vs. large-scale CCS deployment in the continental US
Jordan K. Eccles and
Lincoln Pratson
Applied Energy, 2014, vol. 113, issue C, 352-361
Abstract:
We present a model for rapidly costing and mapping out the cheapest option for organizing infrastructure to transport and store the CO2 emissions that might be captured in United States if carbon capture and storage (CCS) is deployed. We present the organization of transport infrastructure in terms of carbonsheds, regions in which it is cheaper to transport and store CO2 internally than to send the CO2 to other regions. We use our carbonshed framework to evaluate the effect of economies of scale on transport and storage. This is analyzed as the difference between developing small- vs. large-scale CCS systems on a national level, including how the potential depletion of CO2 reservoirs over time could impact costs born by coal power plants that capture CO2. We find that the average value of transport and storage when sources cooperate to reduce transport costs is roughly $10/ton, with costs decreasing as more storage reservoir options are included, and increasing as storage resources are depleted. Our depletion analysis indicates that large, centralized reservoirs could form the backbone of a major carbon storage system in the United States. Policymakers and industry planners could rapidly advance large-scale storage networks by skipping fragmented early networks and moving to large-scale systems at a relatively minor cost of $0–2/ton if 1.5Gt/year are captured from existing power plants by emphasizing cooperation or integrated planning and optimization.
Keywords: Carbon capture and storage; CCS; Transport optimization; Geosequestration (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913005680
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:352-361
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.07.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().