Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator
Davood Ghadiri Moghaddam,
Robert W. Besant and
Carey J. Simonson
Applied Energy, 2014, vol. 113, issue C, 872-882
Abstract:
A liquid-to-air membrane energy exchanger (LAMEE) is an energy exchange device that transfers heat and moisture between air and salt solution streams through a semi-permeable membrane which is permeable for water vapor but impermeable for liquid water. LAMEEs have been used as a dehumidifier/regenerator in air-conditioning systems. In this paper, the solution-side effectiveness are presented for a small-scale single-panel LAMEE when it is used to regenerate the solution flow. The solution-side effectiveness are very important in regenerators where the main focus is on the salt solution, and the solution properties (i.e. solution outlet concentration) are important. The small-scale LAMEE is tested under air dehumidification and solution regeneration test conditions using a LiCl solution at one NTU (i.e. NTU=5) and three different Cr∗ values (Cr∗=2, 4 and 6). The results show that both the air-side and solution-side effectiveness of the LAMEE increase with Cr∗. The solution-side latent effectiveness is lower for the regenerator in comparison to the dehumidifier (e.g. 43% lower at Cr∗=6). Also, the numerical results for a small-scale LAMEE which were presented in literature are used in this paper to evaluate the solution-side effectiveness of the LAMEE under different test conditions. The numerical results show that the difference between the air-side and solution-side latent effectiveness are negligible. Therefore, the air-side latent effectiveness can be used to evaluate the solution-side latent effectiveness of LAMEEs.
Keywords: Salt solution; Effectiveness; LAMEE; Dehumidifier; Regenerator (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913006818
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:113:y:2014:i:c:p:872-882
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.08.037
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().