Development of a coupled reactor with a catalytic combustor and steam reformer for a 5kW solid oxide fuel cell system
Sanggyu Kang,
Kanghun Lee,
Sangseok Yu,
Sang Min Lee and
Kook-Young Ahn
Applied Energy, 2014, vol. 114, issue C, 114-123
Abstract:
The methane (CH4) conversion rate of a steam reformer can be increased by thermal integration with a catalytic combustor, called a coupled reactor. In the present study, a 5kW coupled reactor has been developed based on a 1kW coupled reactor in previous work. The geometric parameters of the space velocity, diameter and length of the coupled reactor selected from the 1kW coupled reactor are tuned and applied to the design of the 5kW coupled reactor. To confirm the scale-up strategy, the performance of 5kW coupled reactor is experimentally investigated with variations of operating parameters such as the fuel utilization in the solid oxide fuel cell (SOFC) stack, the inlet temperature of the catalytic combustor, the excess air ratio of the catalytic combustor, and the steam to carbon ratio (SCR) in the steam reformer. The temperature distributions of coupled reactors are measured along the gas flow direction. The gas composition at the steam reformer outlet is measured to find the CH4 conversion rate of the coupled reactor. The maximum value of the CH4 conversion rate is approximately 93.4%, which means the proposed scale-up strategy can be utilized to develop a large-scale coupled reactor.
Keywords: Scale-up strategy; Thermal integration; Steam reformer; Catalytic combustor; Methane conversion rate (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:114-123
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.09.046
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().