EconPapers    
Economics at your fingertips  
 

Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop

I. Martínez, M.C. Romano, J.R. Fernández, P. Chiesa, R. Murillo and J.C. Abanades

Applied Energy, 2014, vol. 114, issue C, 192-208

Abstract: A detailed and comprehensive design of a H2 production plant based on a novel Ca/Cu chemical looping process is presented in this work. This H2 production process is based on the sorption-enhanced reforming concept using natural gas together with a CaO/CaCO3 chemical loop. A second Cu/CuO loop is incorporated to supply energy for the calcination of the CaCO3 via the reduction of CuO with a fuel gas. A comprehensive energy integration description of the different gas streams available in the plant is provided to allow a thermodynamic assessment of the process and to highlight its advantages and drawbacks. Hydrogen equivalent efficiencies of up to 77% are feasible with this novel Ca/Cu looping process, using an active reforming catalyst based on Pt, high oxidation temperatures and moderate gas velocities in the fixed bed system, which are around 6% points above the efficiency of a reference H2 production plant based on conventional steam reforming including CO2 capture with MDEA. Non-converted carbon compounds in the reforming stage are removed as CO2 in the calcination stage of the Ca/Cu looping process, which will be compressed and sent for storage. Carbon capture efficiencies of around 94% can be obtained with this Ca/Cu looping process, which are significantly higher than those obtained in the reference plant that uses MDEA absorption (around 85%). Additional advantages, such as its compact design and the use of cheaper materials compared to other commercial processes for H2 production with CO2 capture, confirm the potential of the Ca/Cu looping process as a pre-combustion CO2 capture technology for H2 production.

Keywords: Hydrogen; CO2 pre-combustion capture; Sorption enhanced reforming; Chemical looping; Thermal integration (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:192-208

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.09.026

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:192-208