EconPapers    
Economics at your fingertips  
 

Enhanced optical absorption of the plasmonic nanoshell suspension based on the solar photocatalytic hydrogen production system

Huiling Duan and Yimin Xuan

Applied Energy, 2014, vol. 114, issue C, 22-29

Abstract: The absorption properties of the random Al/CdS nanoshell systems are simulated using the finite difference time domain (FDTD) method. The interactions between the nanoshells have been taken into account in the simulation. By comparing the optical absorption of dispersion system with that of single nanoshell, it reveals that the inter-particle coupling cannot be neglected in the simulation of dispersion system. The absorption enhancement is affected by both the inter-particle coupling and the localized surface plasmon resonance (LSPR) effect. The dispersed nanoparticles induce longer optical path inside the dispersion system and enhance light trapping as well as absorption. It can be considered to increase the nanoshell concentration and reduce the particle size to obtain an enhanced absorption.

Keywords: Plasmonic nanoshell; LSPR; Particle dispersion system (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007824
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:22-29

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.09.035

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:22-29