EconPapers    
Economics at your fingertips  
 

Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization

Barna Heidel, Melanie Hilber and Günter Scheffknecht

Applied Energy, 2014, vol. 114, issue C, 485-491

Abstract: The wet flue gas desulfurization process (FGD) in fossil fired power plants offers the advantage of simultaneously removing SO2 and other water soluble pollutants, such as certain oxidized mercury compounds (Hg2+). In order to maximize SO2 removal efficiency of installed FGD units, organic additives can be utilized. In the context of multi-pollutant control by wet FGD, the effect of formic and adipic acid on redox reactions of dissolved mercury compounds is investigated with a continuously operated lab-scale test-rig. For sulfite (SO32-) concentrations above a certain critical value, their potential as reducing agent leads to rapidly increasing formation and re-emission of elemental mercury (Hg0). Increasing chloride concentration and decreasing pH and slurry temperature have been identified as key factors for depressing Hg0 re-emissions. Both organic additives have a negative impact on Hg-retention and cause increased Hg0 re-emissions in the wet FGD process, with formic acid being the significantly stronger reducing agent. Different pathways of Hg2+ reduction were identified by qualitative interpretation of the pH-dependence and by comparison of activation enthalpies and activation entropies. While the first mechanism proposed identifies SO32- as reducing agent and is therefore relevant for any FGD process, the second mechanism involves the formate anion, thus being exclusively relevant for FGDs utilizing formic acid as additive.

Keywords: Mercury; FGD; Organic acid; Additive; Re-emission; Multi-pollutant control (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913008064
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:485-491

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:485-491