EconPapers    
Economics at your fingertips  
 

Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation

Xue Li and Tai-Shung Chung

Applied Energy, 2014, vol. 114, issue C, 600-610

Abstract: A series of well-designed thin-film composite (TFC) hollow fiber membranes via dual-layer co-extrusion technology for pressure retarded osmosis (PRO) applications is reported in this work. By controlling the phase inversion process during spinning, we have molecularly engineered hollow fiber membranes with various structures, dimensions, pore characteristics, and mechanical properties as supports for the synthesis of TFC membranes. Under hydraulic tests, these hollow fiber membrane supports possess high burst pressures from 13 to 24bar. The TFC membranes fabricated by interfacial polymerization on the inner surface of the hollow fiber supports not only exhibit relatively high power densities of 5–12Wm−2 but also display a superior tolerance to high pressures up to 21bar. The TFC membrane synthesized on a small dimensional hollow fiber support, which was spun from a P84 co-polyimide/ethylene glycol (EG)/N-methyl-2-pyrrolidinone (NMP) dope solution with a bore fluid of a water/EG/NMP mixture, shows the most impressive PRO performance (i.e., 12Wm−2 at 21bar using water and 1M NaCl as feeds). Experimental results also suggest that inner-selective TFC hollow fiber membranes made from small dimensional fiber supports by means of delayed demixing during the fiber spinning are preferential for high pressure PRO processes. In addition, it was found that the flow rate of brine solutions plays a crucial effect on TFC membrane performance for osmotic power generation. By investigating the pressure drop as a function of flow rate, one may be able to choose appropriate PRO operation conditions to further ensure the sustainability of hollow fiber membranes for power generation.

Keywords: Hollow fibers; Osmotic power generation; Thin-film composite membrane; Pressure retarded osmosis (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191300857X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:600-610

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.10.037

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:600-610