Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network
R. Chakraborty and
H. Sahu
Applied Energy, 2014, vol. 114, issue C, 827-836
Abstract:
For the first time, an efficient simultaneous trans/esterification process for biodiesel synthesis from waste goat tallow with considerable free fatty acids (FFAs) content has been explored employing an infrared radiation assisted reactor (IRAR). The impacts of methanol to tallow molar ratio, IRAR temperature and H2SO4 concentration on goat tallow conversion were evaluated by response surface methodology (RSM). Under optimal conditions, 96.7% FFA conversion was achieved within 2.5h at 59.93wt.% H2SO4, 69.97°C IRAR temperature and 31.88:1 methanol to tallow molar ratio. The experimental results were also modeled using artificial neural network (ANN) and marginal improvement in modeling efficiency was observed in comparison with RSM. The infrared radiation strategy could significantly accelerate the conversion process as demonstrated through a substantial reduction in reaction time compared to conventionally heated reactor while providing appreciably high biodiesel yield. Moreover, the in situ water removal using silica-gel adsorbent could also facilitate achieving higher FFA conversion to fatty acid methyl ester (FAME). Owing to the occurrence of simultaneous transesterification of triglycerides present in goat tallow, overall 98.5wt.% FAME content was determined at optimal conditions in the product biodiesel which conformed to ASTM and EN biodiesel specifications.
Keywords: Infrared radiation; Waste goat tallow; Biodiesel; Artificial neural network; RSM optimization; In situ water removal (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191300319X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:827-836
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.04.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().