Parameters affecting the performance of a low cost solar still
A. Ahsan,
M. Imteaz,
U.A. Thomas,
M. Azmi,
A. Rahman and
N.N. Nik Daud
Applied Energy, 2014, vol. 114, issue C, 924-930
Abstract:
This study aims at developing a low cost technique to be used in rural and coastal areas for converting saline water into potable water using solar energy. A triangular solar still (TrSS) was, therefore, designed and developed with cheap, lightweight, local and available materials. A number of field experiments were carried out to evaluate the effects of solar radiation intensity, ambient air temperature and the initial water depth on the daily water production of the TrSS. A time lag of about and hour between the hourly peaks of solar radiation and water production is observed. Finally, a few essential relationships were attained, e.g. between the daily production and the initial water depth, between the daily production and daily solar radiation, and between the daily production and the average ambient temperature. The effect of the initial water depth in the basin on the daily water productivity was evaluated by varying the water depths (1.5, 2.5 and 5cm) with the climatic condition of Malaysia and an inverse proportional relationship was revealed between them. However, the daily water productivity is nearly proportional to the daily solar radiation. In addition, some important water quality parameters were tested in the laboratory to evaluate the distillate quality and were then compared with the drinking water standards.
Keywords: Triangular solar still; Water production; Water depth; Distillate quality; Solar radiation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913007101
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:114:y:2014:i:c:p:924-930
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.08.066
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().