An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method
Choongwan Koo,
Sungki Park,
Taehoon Hong and
Hyo Seon Park
Applied Energy, 2014, vol. 115, issue C, 205-215
Abstract:
Building envelope design is considered one of the typical energy-saving techniques. Building envelope serves as the physical separator between building’s interior and exterior environment so as to maintain indoor thermal comfort. To achieve building sustainability, this research aims to develop an estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method. This research was conducted in three steps: (i) selection of building envelope design elements affecting the heating and cooling demand of a multi-family housing unit; (ii) establishment of a standard database for the heating and cooling demand by building envelope design through energy simulation; and (iii) implementation of the finite element method for estimating the heating and cooling demand by building envelope design. The proposed model was validated compared to the simulation results and the actual data. Regarding the comparison with the simulation results, the average error rate for the heating and cooling demand was determined to be 1.09% and 6.61%, respectively. Also, regarding the comparison with the actual data, the average error rate for the heating and cooling consumption was determined to be 4.95% and 5.77%, respectively. The proposed model could allow an architect or a construction manager to easily and accurately estimate the heating and cooling demand of a residential building with a different envelope design in the early design phase. It could also be useful for contractors in a competitive bidding process to analyze the alternatives.
Keywords: Building envelope design; Heating and cooling demand; Finite element method; Shape function; Interpolation function; Energy simulation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913009070
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:115:y:2014:i:c:p:205-215
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.11.014
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().