EconPapers    
Economics at your fingertips  
 

Experimental investigation into scaling models of methane hydrate reservoir

Yi Wang, Xiao-Sen Li, Gang Li, Yu Zhang and Jing-Chun Feng

Applied Energy, 2014, vol. 115, issue C, 47-56

Abstract: The Cubic Hydrate Simulator (CHS), a three-dimensional 5.8L cubic pressure vessel, and the Pilot-Scale Hydrate Simulator (PHS), a three-dimensional 117.8L pressure vessel, are used for investigating the production processes of hydrate. The gas production behaviors of methane hydrate in the porous media using the thermal stimulation method with a five-spot well system are studied. The experimental conditions are designed by a set of scaling criteria for the gas hydrate reservoir. The experimental results verify that the scaling criteria for gas hydrate production are reliable. The scaling criteria are used for predicting the production behavior of the real-scale hydrate reservoir. In the model of the real-scale hydrate reservoir with the size of 36m×36m×36m, methane of 1.168×106m3 (STP) is produced from the hydrate reservoir during 13.9days of gas production. It is obtained that the gas recovery is 0.73, and the final energy efficiency is 9.5.

Keywords: Methane hydrate; Thermal stimulation; Five-spot well; Scaling criteria; Gas production (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913008842
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:115:y:2014:i:c:p:47-56

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.10.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:47-56