Combination of CO2 geological storage with deep saline water recovery in western China: Insights from numerical analyses
Qi Li,
Ya-Ni Wei,
Guizhen Liu and
Qing Lin
Applied Energy, 2014, vol. 116, issue C, 110 pages
Abstract:
CO2 geological storage, when combined with deep saline water recovery (CO2-EWR), not only achieves the relatively secure storage of CO2 that was captured from the coal chemical industry, due to lower pressure, but also enhances saline water for drinking and industrial or agricultural utilization. This storage will undoubtedly become a win–win choice for the enhancement of energy security and for the promotion of regional development in China, particularly for western regions with a relative shortage of water resources and a more fragile ecological environment. In this paper, a three-dimensional injection–extraction model is established that uses the TOUGH2/ECO2N program according to typical formation parameters of a coal chemical industry in the Xinjiang Uyghur Autonomous Region. Numerical results showed that under the guarantee of sufficient water conditions, 1.73×108tons of saline water could be produced when the CO2-EWR is adopted. Well arrangements and formation parameters are also analyzed, and the following conclusions can be drawn: arrangements of pumping wells, such as pumping well number, pumping rate and distance, have considerable influences on the reservoir pressure, and in addition, the sensitivity of pressure on the distance and pumping rate decreases as their values increase. In view of these features, it is necessary to find an optimal point to achieve the best combination of pressure, the leakage time and the amount of dissolution. Formation parameters primarily control the mechanism of CO2 migration and dissolution. Salinity in the salt water has the greatest impact on CO2 dissolution trapping followed by permeability and porosity. The arrival time that is allowable for saline water production primarily depends on porosity followed by the permeability ratio and the arrangements of pumping wells. The reservoir pressure change that is caused by parameters is not obvious compared with setting pumping wells. Overall, CO2-EWR technology is a potential strategic choice for China, particularly in western regions. Additionally, the analysis results provide a reliable guide and reference for CO2 storage site selection, as well as the practical arrangements of wells.
Keywords: CO2-EWR; Coal chemical enterprises; CCUS; Saline aquifer; Regional development; Energy security (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913009562
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:116:y:2014:i:c:p:101-110
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.11.050
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().