EconPapers    
Economics at your fingertips  
 

Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector

Hongfei Zheng, Jianying Xiong, Yuehong Su and Haiyin Zhang

Applied Energy, 2014, vol. 116, issue C, 159-166

Abstract: The receiver’s back surface radiative characteristics of a heat-pipe evacuated-tube solar collector (ETSC) may have a significant influence on its performance. This influence is generally related to the back surface emissivity and temperature; however it has been not studied previously. This paper firstly presents a heat transfer model for the ETSC, which is then derived to characterize the relationship between the heat loss and the back surface emissivity of the ETSC. A steady state experiment has been also performed to measure the heat loss of ETSC with different back surface emissivity values. The experimental results indicate that the heat loss of the ETSC increases with the increase of the back surface emissivity, but the rate of increase differs for different operation temperatures. When the back surface emissivity increases from 0.03 to 0.12, the heat loss of ETSC only increases by 31% when the operation temperature is below 100°C, but the heat loss will increase to 96% when the operation temperature is over 200°C. This means that the change of back surface emissivity can significantly affect the performance of the ETSC at higher temperature but affect little at lower temperature. Based on this, a novel method by performing roughness treatment on the receiver’s back surface is proposed to solve the overheating problem of ETSC in summer. Two solar water heaters including 6 ETSCs with standard and roughness-treated tubes were tested under real weather condition. Experiment reveals that when the water temperature in tank is below 60°C, the two solar water heaters own similar temperature change. But when the temperature is over 80°C, the solar water heater with roughness-treated tube shows obviously lower temperature increase than that with standard tube. Therefore, it is very effective to prevent overheating of some solar water heaters used in high latitudes in summer by increasing the receiver’s back surface roughness.

Keywords: Evacuated-tube solar collector (ETSC); Receiver’s back surface; Roughness treatment; Emissivity; Heat loss (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913009586
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:116:y:2014:i:c:p:159-166

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.11.051

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:116:y:2014:i:c:p:159-166