An interactive building power demand management strategy for facilitating smart grid optimization
Xue Xue,
Shengwei Wang,
Yongjun Sun and
Fu Xiao
Applied Energy, 2014, vol. 116, issue C, 297-310
Abstract:
With increasing use and integration of renewable energies, power imbalance between supply and demand sides has become one of the most critical issues in developing smart grid. As the major power consumers at demand side, buildings can actually perform as distributed thermal storages to help relieving power imbalance of a grid. However, power demand alteration potentials of buildings and energy information of grids might not be effectively predicted and communicated for interaction and optimization. This paper presents an interactive building power demand management strategy for the interaction of commercial buildings with a smart grid and facilitating the grid optimization. A simplified building thermal storage model is developed for predicting and characterizing power demand alteration potentials of individual buildings together with a model for predicting the normal power demand profiles of buildings. The simulation test results show that commercial buildings can contribute significantly and effectively in power demand management or alterations with building power demand characteristics identified properly.
Keywords: Building demand management; Interactive strategy; Smart grid; Building thermal storage model; Dynamic pricing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (66)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913009719
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:116:y:2014:i:c:p:297-310
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.11.064
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().