Employing two novel mechanical fault ride through controllers for keeping stability of fixed speed wind generation systems hosted by standalone micro-grid
Rashad M. Kamel
Applied Energy, 2014, vol. 116, issue C, 398-408
Abstract:
This paper proposes and designs two novels Fault Ride Through (FRT) controllers for maintaining Fixed Speed Wind Generation system (FSWGs) stability during fault events. The first technique has been implemented by increasing the wind turbine blade pitch angle with maximum possible rate to reduce the mechanical extracted wind power and consequently suppress wind generation system acceleration. The second FRT technique has been verified by adapting gear ratio of wind generation system to run far from optimum maximum power point and help FRT process. Effectiveness of the two proposed FRT techniques has been proven by accurate simulation of the most severe disturbance conditions. Also, Results indicated that second technique gives faster response than the first one. Without employing any FRT technique, FSWGs cannot keep its stability and the standalone Micro-Grid (MG) transfers to the blackout mode. Implementation the two FRT techniques requires no additional hardware. Only, control algorithms need little modification to deal with fault event and help FRT process. This fact makes the two proposed FRT techniques are simple, practical and highly economical attractive.
Keywords: Standalone micro-grid; Fixed speed wind generation system; Fault ride through; Modified pitch angle controller; Variable ratio gear box (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913009021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:116:y:2014:i:c:p:398-408
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.11.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().