EconPapers    
Economics at your fingertips  
 

Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling

Christopher K. Clayton and Kevin J. Whitty

Applied Energy, 2014, vol. 116, issue C, 416-423

Abstract: Chemical looping combustion with oxygen uncoupling (CLOU) is a promising CO2-capture ready energy technology that employs oxygen carriers with thermodynamic properties that cause oxygen to be spontaneously liberated as gaseous O2 in the fuel reactor, where it can react directly with solid fuels. One of the promising CLOU carrier metals is copper, cycling between CuO and Cu2O. Experimentally-determined rate expressions for these reactions are needed for proper development, modeling and scale-up of CLOU technology. The CuO–Cu2O system presents an interesting challenge in that the rate of decomposition depends on the thermodynamic driving force imparted by the difference between equilibrium and actual partial pressures of oxygen, and the equilibrium partial pressure is strongly temperature dependent in the range useful for combustion. This study investigates decomposition of two different copper-based oxygen carriers, from CuO to Cu2O oxidation states, to develop a universal kinetic expression to describe the observed rate of reaction as a function of temperature, conversion and gas environment. The kinetic model developed is compared to results of a third support type (silica) using two different CuOwt% loadings (64wt% CuO and 16wt% CuO) to demonstrate applicability to other support types and copper oxide loadings.

Keywords: CLOU; Copper oxide; Chemical looping; Decomposition kinetics (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913008520
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:116:y:2014:i:c:p:416-423

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2013.10.032

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:116:y:2014:i:c:p:416-423